

Mark Scheme (Results)

Summer 2023

Pearson Edexcel International GCSE In Further Pure Mathematics (4PM1) Paper 01R

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2023 Question Paper Log Number P74098A Publications Code 4PM1_01R_2306_MS All the material in this publication is copyright © Pearson Education Ltd 2023

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the last candidate in exactly the same way as they mark the first.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification/indicative content will not be exhaustive.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, a senior examiner must be consulted before a mark is given.
- Crossed out work should be marked **unless** the candidate has replaced it with an alternative response.

• Types of mark

- o M marks: method marks
- A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)

• Abbreviations

- cao correct answer only
- o ft follow through
- o isw ignore subsequent working
- o SC special case
- oe or equivalent (and appropriate)
- o dep dependent
- o indep independent
- o awrt answer which rounds to
- eeoo each error or omission
- No working

If no working is shown then correct answers normally score full marks If no working is shown then incorrect (even though nearly correct) answers score no marks.

• With working

If the final answer is wrong, always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.

If a candidate misreads a number from the question. Eg. Uses 252 instead of 255; method marks may be awarded provided the question has not been simplified. Examiners should send any instance of a suspected misread to review.

If there is a choice of methods shown, then award the lowest mark, unless the answer on the answer line makes clear the method that has been used. If there is no answer achieved then check the working for any marks appropriate from the mark scheme.

• Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.

It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.

Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

• Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded to another.

General Principles for Further Pure Mathematics Marking

(but note that specific mark schemes may sometimes override these general principles)

Method mark for solving a 3 term quadratic equation:

1. Factorisation:

 $(x^2 + bx + c) = (x + p)(x + q)$, where |pq| = |c| leading to x = ... $(ax^2 + bx + c) = (mx + p)(nx + q)$ where |pq| = |c| and |mn| = |a| leading to x = ...

2. <u>Formula</u>:

Attempt to use the **correct** formula (shown explicitly or implied by working) with values for a, b and c, leading to x = ...

3. Completing the square:

 $x^2 + bx + c = 0$: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$ leading to $\chi = \dots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $(x^n \rightarrow x^{n-1})$

2. Integration:

Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$

Use of a formula:

Generally, the method mark is gained by **either**

quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values

or, where the formula is <u>not</u> quoted, the method mark can be gained by implication from the substitution of <u>correct</u> values and then proceeding to a solution.

Answers without working:

The rubric states "Without sufficient working, correct answers <u>may</u> be awarded no marks".

General policy is that if it could be done "in your head" detailed working would not be required. (Mark schemes may override this eg in a case of "prove or show...."

Exact answers:

When a question demands an exact answer, all the working must also be exact. Once a candidate loses exactness by resorting to decimals the exactness cannot be regained.

Rounding answers (where accuracy is specified in the question)

Penalise only once per question for failing to round as instructed - ie giving more digits in the answers. Answers with fewer digits are automatically incorrect, but the isw rule may allow the mark to be awarded before the final answer is given.

Question	Scheme	Marks
1	$\left(4-\sqrt{2}\right)\left(a+b\sqrt{2}\right) = 10 + \sqrt{2} \Longrightarrow a + b\sqrt{2} = \frac{10+\sqrt{2}}{4-\sqrt{2}}$	B1
	$\frac{\left(10+\sqrt{2}\right)}{\left(4-\sqrt{2}\right)} \times \frac{\left(4+\sqrt{2}\right)}{\left(4+\sqrt{2}\right)} = \frac{42+14\sqrt{2}}{14} = 3+\sqrt{2} = a+b\sqrt{2}$	M1
	$\Rightarrow a = 3, b = 1$	A1A1 [4]
	ALT	
	$ (4 - \sqrt{2})(a + b\sqrt{2}) = 4a + 4b\sqrt{2} - a\sqrt{2} - 2b $ $ \Rightarrow 4a - 2b + \sqrt{2}(4b - a) = 10 + \sqrt{2} $	B1
	4a - 2b = 10 $-a + 4b = 1$	M1
	$\Rightarrow a = 3, b = 1$	A1A1 [4]
	Τα	otal 4 marks

4PM1	Paper	1R
Mark	Schen	ne

Mark	Notes
B1	For forming the correct equation $[a + b\sqrt{2} =] \frac{10 + \sqrt{2}}{4 - \sqrt{2}}$
21	Allow as an expression with $a + b\sqrt{2}$ omitted.
M1	For multiplying the denominator and the numerator by $4 + \sqrt{2}$ The calculation must be shown. Minimum working is: $\frac{(10+\sqrt{2})}{(4-\sqrt{2})} \times \frac{(4+\sqrt{2})}{(4+\sqrt{2})} = \frac{42+14\sqrt{2}}{14}$
A1	Either $a = 3$ OR $b = 1$ Allow embedded.
A1	Both $a = 3$ AND $b = 1$ Allow embedded.
	ALT
B1	For forming a simplified expression in <i>a</i> and <i>b</i> for the area. Minimum required is expression of the form $4a + 4b\sqrt{2} - a\sqrt{2} - 2b$
M1	For solving the simultaneous equations in <i>a</i> and <i>b</i> Condone arithmetic errors, but process for solving must be correct.
A1	Either $a = 3$ OR $b = 1$ Allow embedded.
A1	Both $a = 3$ AND $b = 1$ Allow embedded.

Question	Scheme	Marks
2(a)	$6 \times \left(-\frac{1}{2}\right)^2 - \left(-\frac{1}{2}\right)q = 5 \Longrightarrow \frac{3}{2} + \frac{q}{2} = 5 \Longrightarrow q = 7$	M1A1
	$y = px + 9 \Longrightarrow 7 = p \times -\frac{1}{2} + 9 \Longrightarrow p = 4$	M1A1 [4]
	ALT	
	$6x^{2} - x(px+9) = 5 \Rightarrow \frac{3}{2} - \frac{p}{4} + \frac{9}{2} - 5 = 0 \Rightarrow p = 4$	[M1A1
	$y = px + 9 \Rightarrow q = 4 \times -\frac{1}{2} + 9 \Rightarrow q = 7$	M1A1]
	ALT 2	
	$6x^2 - x(px + 9) - 5 = 0$ and	
	$(2x+1)(ax+b) = 0 \Longrightarrow 2ax^2 + x(2b+a) + b = 0$	
	6-p = 2a and $b = -5-9 = 2b + a \implies -9 = 2 \times -5 + a \implies a = 1\therefore 6 \qquad m = 2 \implies m = 4$	
	$\cdots 0 - p - 2 \rightarrow p - 4$	[M1A1
	$q = 4 \times -\frac{1}{2} + 9 = 7$	M1A1]
(b)	$6x^{2} - x(4x+9) = 5 \Longrightarrow 6x^{2} - 4x^{2} - 9x - 5 = 0 \Longrightarrow 2x^{2} - 9x - 5 = 0$	M1
	$2x^2 - 9x - 5 = 0 \Longrightarrow (2x+1)(x-5) = 0 \Longrightarrow x = 5$	M1A1
	$y = 4 \times 5 + 9 = 29 \Longrightarrow (5, 29)$	A1 [4]
	Tot	al 8 marks

Part	Mark	Notes
(a)	M1	Substitutes $\left(-\frac{1}{2}\right)$ into the quadratic to find the value of q (or y)
	A1	For $q = 7$
	M1	For using the linear equation with $y =$ their q and $x = -\frac{1}{2}$ to find the
		value of <i>p</i>
	A1	For $p = 4$
	ALT	
	M1	Substitutes the linear expression for y and $\left(-\frac{1}{2}\right)$ into the quadratic to
		find the value of <i>p</i>
	A1	For $p = 4$
	M1	For using the linear equation with their <i>p</i> and $x = -\frac{1}{2}$ to find the value
		of q
	A1	For $q = 7$
	ALT 2	
	M1A1	For the complete method which must be shown:
		• Substituting the linear expression for <i>y</i> into the quadratic
		• Writing $(2x + 1)(ax + b) = 0$ and expanding
		• Comparing coefficients for form equations in a, b and p
		• Solving simultaneous equations to find <i>a</i> , <i>b</i> and <i>p</i>
	M1	For using the linear equation with their <i>p</i> and $x = -\frac{1}{2}$ to find the value
		of q
	A1	For $q = 7$
(b)	M1	For substituting the linear equation (with their value of p) into the guadratic equation to form a 2TO in r
	M1	quadratic equation to form a 5 $IQ III x$
	IVIII	For solving their 31Q, must be a 31Q. Independent of the first M.
	A 1	See general guidance on what constitutes an attempt to solve a $51Q$.
		For the other solution to the equations
	AI	For the other solution to the equations.
	M1111	A 1 may be awarded for correct work in (a) if ALT2 was used then award
	the fine	AT may be awarded for correct work in (a) if AL12 was used, then award 1 A mark as per scheme
	the ma	i A mark as per seneme.

Question	Scheme	Marks
3(a)	$BC^2 = 10^2 + 8^2 - 2 \times 10 \times 8 \times \cos 100^{\circ}$	M1
	$BC = 13.848 \approx 13.8$	A1
		[2]
(b)	(i) $\sin ABC = \frac{8\sin 100^{\circ}}{13.848} \Rightarrow ABC = 34.6752^{\circ} \approx 34.7^{\circ}$	M1A1
	(ii) $\angle ACB = 180^{\circ} - 100^{\circ} - 34.6752^{\circ} = 45.324^{\circ} \approx 45.3^{\circ}$	B1FT
	22:10:010 2 102	[3]
	(i)(ii) $\cos ACB = \frac{8^2 + 13.848 \dots 2^{-10^2}}{2 \times 8 \times 13.848} \Rightarrow ACB = 45.330 \dots$	[MIAI
	$ABC = 180^{\circ} - 100^{\circ} - 45.330 \dots = 34.6699 \dots$	B1FT]
(c)	$/MBC = 34.675 \div 2 = 17.337^{\circ}$	
	$= 1 (DMC + 100^{\circ} + 7.227^{\circ} + 117.22)^{\circ}$	B1FT
	and $\angle BMC = 180 - 1/.33 / = 11/.33$	
	$MC = \frac{13.848 \sin 17.337^{\circ}}{\sin 117.33^{\circ}} = 4.6293$	M1
	Area of <i>BMC</i> =	
	$\frac{1}{2}$ × 4.629 × 13.848 × sin 45.324° = 22.79 ≈ 22.8 (cm ²)	M1A1 [4]
	ALT	
	$ABM = 34.675 \div 2 = 17.337 \dots^{\circ}$	
	and $AMB = 180 - 100 - 17.33 \dots = 62.66 \dots$	[B1FT
	$BM = \frac{10\sin 100}{\sin 62.66} = 11.086$	M1
	Area of $BMC =$	M1A1]
	$\frac{1}{2} \times 13.848 \dots \times 11.086 \dots \times \sin 17.337 \dots = 22.87 \dots$	Ŀ
	$\approx 22.9 (\mathrm{cm}^2)$	
	T	otal 9 marks

2
BC

ALT					
(b)(i)(ii)	M1	For applying cosine rule correctly to find angle <i>ACB</i>			
		Accept any appropriate trigonometry.			
	A1	For awrt 45.3° (angle ACB)			
	B1FT	FT 180 – 100 – <i>their</i> 45.330 (angle <i>ABC</i>)			
(c)	B1ft	For both angles <i>MBC</i> and <i>BMC</i>			
	M1	For applying the sine rule using their angles and BC to find length			
		МС			
		Allow alternative correct methods to find MC.			
	M1	For using Area = $\frac{1}{2}ab\sin C$ using their length and angles.			
		Their $MC \neq 4$			
	A1	Awrt 22.8 or awrt 22.9			
ALT					
(c)	B1ft	For both angles <i>ABM</i> and <i>AMB</i>			
	M1	For applying sine rule using their angles to find length <i>BM</i> .			
		Allow alternative correct methods to find BM.			
	M1	For using Area = $\frac{1}{2}ab\sin C$ using their length and angles.			
		Their $MC \neq 4$ if used.			
	A1	Awrt 22.8 or awrt 22.9			

Question					Schem	ie					Marks
4(a)											
											B2
		x	0	1	1.5	2	3	4	5	6	D2
											[2]
		у	7	2.3	2.0	2.1	2.5	3	3.5	4	
(b)											
		6									B2ft
		- •				/					[2]
		2	L	/							
		0		2		6	<u> </u>				
(c)	$2x + \ln(24 -$	-5x)	— ln 3	36 = 0 =	$\Rightarrow \ln\left(\frac{1}{2}\right)$	$\frac{24-5x}{36}$	$\left(\frac{2}{2}\right) = -2$	2 <i>x</i>			
	$\Rightarrow \frac{24-5x}{36} = e^{-2x} \Rightarrow \frac{2}{3} - \frac{5x}{36} = e^{-2x}$				M1						
	$\Rightarrow 4 - \frac{5x}{c} = 6e^{-2x}$				1111						
	$ \begin{array}{c} 6 \\ x \\ x$				M1A1						
	$\Rightarrow 5 - \frac{1}{3} = \frac{1}{2} + 6e^{-x} + 1 \Rightarrow y = 5 - \frac{1}{3}$			M1A1FT							
	$\Rightarrow x = 0.2,$	4.8									
	[5]										
					/						
	2	L	/			_					
	0		2	a	6						
										T	4.0.4
										1	otal 9 marks

Part	Mark	Notes
(a)	B1	At least two correct values rounded correctly.
	B1	All values correct, rounded correctly.
(b)	B1ft	Their points plotted within half of one square.
	B1ft	Their points joined up in a smooth curve.
		Note: do not allow ruled sections.
(c)	M1	Combines the logs correctly and raises both sides to the power of base e
	M1	Rearranges the equation to obtain the equation of the curve on one side
		and the equation of the straight line on the other.
	A1	Achieves a correct equation of the straight line.
		Note: equivalent forms are acceptable.
	M1	Draws their line provided it is of the form $y = k \pm \frac{x}{3}$ when simplified.
	A1FT	Provided M1M1A1M1 awarded.
		For both correct values of <i>x</i> to 1 decimal place, their values must follow
		through from their graph.
		0.2, 0.3, 0.4 and 4.8
		Condone coordinates.
		Note: correct values seen with no working scores M0M0A0M0A0

Question	Scheme	Marks
5(a)	$f(1) = 2 \times 1^3 + a \times 1^2 - 14 \times 1 + b = 0 \implies a + b = 12$	M1
	$f(4) = 2 \times 4^3 + a \times 4^2 - 14 \times 4 + b = 39 \Longrightarrow 16a + b = -33$	M1
	$\Rightarrow 15a = -45 \Rightarrow a = -3*$	M1A1
	$\Rightarrow b = 15$	cso
		B1
	ALT nolynomial division	[5]
	$(2x^3 + ax^2 - 14x + b) \div (x - 1) = 2x^2 + (a + 2)x - 14 + a + 2 \text{ and}$ comparison of final step of division with <i>b</i> to obtain an equation	
	or $(2x^3 + ax^2 - 14x + b) \div (x - 4) = 2x^2 + (a + 8)x + (18 + 4a)$ r 39 and comparison of final step of division with obtaining remainder 39 to obtain an equation	[M1
	$(2x^3 + ax^2 - 14x + b) \div (x - 1) = 2x^2 + (a + 2)x - 14 + a + 2$ and comparison of final step of division with <i>b</i> to obtain an equation and $(2x^3 + ax^2 - 14x + b) \div (x - 4) = 2x^2 + (a + 8)x + (18 + 4a)$ r 39 and comparison of final step of division with obtaining remainder 39 to obtain an equation	M1
	b = 12 - a b + 4(18 + 4a) = 39	M1
	$a = -3^*$ b = 15	A1cso B1]
(b)	$\frac{2x^2 - x - 15}{(x-1) 2x^3 - 3x^2 - 14x + 15}$	M1A1
	f(x) = (x-1)(2x+5)(x-3)	dM1A1 [4]
(c)	$p = -\frac{5}{2} q = 1 r = 3$	B1ft B1ft B1ft [3]

(d)
$$A = \left| \int_{1}^{3} (2x^{3} - 3x^{2} - 14x + 15) dx \right| + \int_{-\frac{5}{2}}^{1} (2x^{3} - 3x^{2} - 14x + 15) dx$$

$$A = \left[\left[\frac{2x^{4}}{4} - \frac{3x^{3}}{3} - \frac{14x^{2}}{2} + 15x \right]_{1}^{3} \right] + \left[\frac{2x^{4}}{4} - \frac{3x^{3}}{3} - \frac{14x^{2}}{2} + 15x \right]_{-\frac{5}{2}}^{1}$$

$$A = \left[\left[\left(\frac{3^{4}}{2} - 3^{3} - 7 \times 3^{2} + 15 \times 3 \right) - \left(\frac{1^{4}}{2} - 1^{3} - 7 \times 1^{2} + 15 \times 1 \right) \right] \right]$$

$$+ \left[\left(\frac{1^{4}}{2} - 1^{3} - 7 \times 1^{2} + 15 \times 1 \right) - \left(\frac{\left(-\frac{5}{2} \right)^{4}}{2} - \left(-\frac{5}{2} \right)^{3} - 7 \times \left(-\frac{5}{2} \right)^{2} + 15 \times \left(-\frac{5}{2} \right) \right) \right]$$

$$A = 12 + \frac{1715}{32} = \frac{2099}{32} \text{ or } 65.59375$$

$$A1$$

$$[4]$$

$$Total 16 marks$$

Part	Mark	Notes				
(a)	M1	For use of $f(1) = 0$ or use of $f(4) = 39$				
	M1	For use of $f(1) = 0$ and use of $f(4) = 39$				
	M1	For solving the simultaneous equations in <i>a</i> and <i>b</i>				
		Must see at least one line of working before a or b obtained.				
		Must see an equation in just one variable.				
	Alcso	For showing $a = -3^*$				
		Must see expression only in terms of <i>a</i>				
	B1	For the correct value of $b = 15$ seen.				
		Note: this is an A mark in epen.				
	ALT –	polynomial division				
	M1	Correct method for forming one equation by polynomial division				
		together with comparison of the final step of the division with the				
		required result (no remainder for division by $(x - 1)$ and remainder 39				
	2.61	for division by $(x - 4)$				
	MI	Correct method for forming both equations by polynomial division				
		together with comparison of the final step of the division with the				
		required result (no remainder for division by $(x - 1)$ and remainder 39 for division by $(x - 1)$)				
	M 1	For acting the simultaneous equations in g and h				
	IVI I	For solving the simultaneous equations in a and b Must see at least one line of working before a or b obtained				
	Alcso	For showing $a = -3^*$				
	AICSU	For showing $u = -3^{-1}$ Must see expression only in terms of <i>a</i> is $ka = -2k$ before $a = -2$				
	D1	For the correct value of $h = 15$ scen				
	DI	Note: this is an A mark in epen				
	Assumi	$a_{ng} a = -3$ and solving to find $b = 15$ scores maximum				
	M1M0	MOA0A1				
(b)	Condo	ne (b) completed in (c)				
(-)	M1	For carrying out polynomial division/comparing coefficients to find the				
		quadratic factor. Must reach $2x^2 \pm \cdots$.				
		Allow statement of quadratic factor if polynomial division by $(x - 1)$				
		used in (a).				
	A1	For the correct quadratic factor.				
	dM1	For factorising their 3TQ				
		See general guidance for what constitutes an attempt to factorise a 3TQ.				
	A1	For the correct factorisation of $f(x)$ on one line.				
		Condone omission of $f(x) =$				
	Note: co	omplete factorisation seen with no method scores M0A0M0A0.				
(c)	B1ft	For one correct value for any of p , r or q				
		FT their linear factors in (b). Values need not be identified as p, r, q , but				
	D10	If they are labelled these should be $p < q < r$.				
	BII	For two correct values.				
		F I their linear factors in (b). Values need not be identified as p, r, q , but if they are labelled these should be $n \neq q \neq r$				
	D14	If they are fabelled these should be $p < q < 1$. For all three correct values				
	DIII	For an unce context values. ET their linear factors in (b), but 1 must be one of the values.				
		Values need not be identified as $n = r = a$, but if they are labelled these				
		should be $n < a < r$.				

(d)	M1	For a correct statement for the area of the shaded regions with their
		limits correctly used.
		Minimum required is:
		$\int_{p}^{q} (2x^{3} - 3x^{2} - 14x + 15) dx - \int_{q}^{r} (2x^{3} - 3x^{2} - 14x + 15) dx$
		with $p < q < r$ shown as numerical limits
		or
		$\int_{p}^{q} (2x^{3} - 3x^{2} - 14x + 15) dx + \left \int_{q}^{r} (2x^{3} - 3x^{2} - 14x + 15) dx \right $
		with $p < q < r$ shown as numerical limits
	M1*	For an attempt to integrate their expression.
		Minimum required is:
		• two powers of terms to increase by 1
		• no powers of terms to decrease
		Condone $+c$
	dM1	For substituting their limits correctly to evaluate the integrated
	anti	expression.
		Must show the substitution if their integral or their limits are incorrect
		Correct exact answer following correct integral with correct limits
		implies this most
		Condone $+c$ as long as this is cancelled out during the substitution.
	A1	For the correct area.
		Exact area required.

Question	Scheme	Marks
6(a)	$\tan 30^\circ = \frac{r}{h} \Longrightarrow r = \frac{h}{\sqrt{3}}$	B1
	$V = \frac{1}{3}\pi r^2 h \Longrightarrow V = \frac{1}{3}\pi \left(\frac{h}{\sqrt{3}}\right)^2 h \Longrightarrow V = \frac{1}{9}\pi h^3 *$	M1A1 cso [3]
(b)	$\frac{\mathrm{d}V}{\mathrm{d}t} = -4$	B1
	$A = \pi r^2 \Longrightarrow A = \pi \left(\frac{h}{\sqrt{3}}\right)^2 = \frac{\pi h^2}{3}$	B1
	$\frac{\mathrm{d}A}{\mathrm{d}h} = \frac{2\pi h}{3} \qquad \frac{\mathrm{d}V}{\mathrm{d}h} = \frac{3\pi h^2}{9} = \frac{\pi h^2}{3}$	M1M1A1
	$\frac{\mathrm{d}A}{\mathrm{d}t} = \frac{\mathrm{d}A}{\mathrm{d}h} \times \frac{\mathrm{d}V}{\mathrm{d}t} \times \frac{1}{\frac{\mathrm{d}V}{\mathrm{d}h}}$	M1
	$\frac{\mathrm{d}A}{\mathrm{d}t} = \frac{2\pi h}{3} \times (-4) \times \frac{3}{\pi h^2} = -\frac{8}{h} \Longrightarrow \frac{\mathrm{d}A}{\mathrm{d}t} = -\frac{8}{24} = -\frac{1}{3} \left(\mathrm{cm}^2/\mathrm{s}\right)$	dM1A1 [8]
	ALT – working in terms of <i>r</i> rather than <i>h</i>	
	$\frac{\mathrm{d}v}{\mathrm{d}t} = -4$	[B1
	$V = \frac{1}{3}\pi r^2 h \Rightarrow V = \frac{1}{3}\pi r^2 (\sqrt{3}r) = \frac{\sqrt{3}}{3}\pi r^3$	B1
	$A = \pi r^2 \Rightarrow \frac{\mathrm{d}A}{\mathrm{d}r} = 2\pi r$ $V = \frac{\sqrt{3}}{3}\pi r^3 \Rightarrow \frac{\mathrm{d}V}{\mathrm{d}r} = \sqrt{3}\pi r^2$	M1M1A1
	$\frac{\mathrm{d}A}{\mathrm{d}t} = \frac{\mathrm{d}A}{\mathrm{d}r} \times \frac{1}{\frac{\mathrm{d}V}{\mathrm{d}r}} \times \frac{\mathrm{d}V}{\mathrm{d}t}$	M1
	$\frac{dA}{dt} = 2\pi r \times \frac{1}{\sqrt{3}\pi r^2} \times -4 = -\frac{8}{\sqrt{3}r} \implies \frac{dA}{dt} = -\frac{8}{\sqrt{3}\times\frac{24}{\sqrt{3}}} = -\frac{1}{3}$	dM1A1]
	Το	tal 11 marks

Part	Mark	Notes
(a)		For $r = \frac{h}{r^2}$ or $r^2 = \frac{1}{2}h^2$
		$\frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}} = 1$
	B1	$r - \frac{h}{h}$ may be implied by substitution into the correct formula for
		$r = \frac{1}{\sqrt{3}}$ may be implied by substitution into the context formula for
		volume of a cone.
	M1	For using the correct volume of a cone and substituting in their
		expression for r or r^2 to find an expression for the volume in terms of h
	A1	For the correct expression with no errors seen.
(b)		Must have $V = dV$
(0)	B 1	For stating $\frac{dv}{dt} = -4$ (allow +)
	DI	ui May be embedded in working
		For finding the correct expression for the area of a circle in terms of h
		Note: if differentiation is attempted before writing in terms of h then
		award
	B1	1 st M1 for $\frac{dA}{dt} = \frac{dA}{dt} \times \frac{dr}{dt}$ with attempts at $\frac{dA}{dt}$, $\frac{dr}{dt}$ found and substituted in
		and attempt to substitute for r in terms of h .
		B1 once $\frac{dA}{d}$ found completely in terms of h
		For attempting to differentiate their expression for A in terms of h
	M1	See general guidance for what constitutes an attempt to differentiate.
		A must have the form $A = kh^2$ (dimensionally correct for area).
	M1	For attempting to differentiate the given V
		See general guidance for what constitutes an attempt to differentiate.
	A1	Both derivatives correct. $\frac{dA}{dV}$ and $\frac{dV}{dV}$
		dh dh
	M1	For a correct expression of chain rule to find $\frac{dA}{dA}$
		dt For substituting their derivatives inte a correct chain rule
	dM1	Dep on previous three M marks
		- dA = 1 (-2 + 1)
		For the correct $\frac{dt}{dt} = -\frac{1}{3} (cm^2/s)$
	A1	Allow -0.3 but not -0.3 .
		ISW once exact answer found.
	ALT	
		For stating $\frac{dV}{dt} = -4$ (allow +)
	B1	$\frac{dt}{dt}$
		May be embedded in working.
	B1	For finding the correct expression for the volume in terms of r Must be working with correct volume expression as given in (a)
		For attempting to differentiate expression for A in terms of r
	M1	See general guidance for what constitutes an attempt to differentiate.
	-	A must have the form $A = kr^2$ (dimensionally correct for area).
	М1	For attempting to differentiate expression for V in terms of r
	1111	See general guidance for what constitutes an attempt to differentiate.

A1	Both derivatives correct. $\frac{dA}{dr}$ and $\frac{dV}{dr}$
M1	For a correct expression of chain rule to find $\frac{dA}{dt}$
dM1	For substituting their derivatives into a correct chain rule. Dep on previous three M marks.
A1	For the correct $\frac{dA}{dt} = -\frac{1}{3} (cm^2/s)$ Allow -0.3 but not -0.3 . ISW once exact answer found.

Question	Scheme	Marks
7(a)	$dy = \frac{1}{2} + \frac{1}{2} + \frac{1}{2}$	M1A1
	$\frac{1}{dx} = 2mx + \frac{1}{2} \times 64x^{-2}$	
	$22 \frac{1}{2} \cdot 2 = 0 \cdot 22 \cdot 4 \frac{1}{2} \cdot 2 = 4 \cdot 0 \cdot 16 \cdot 0 = 0 \cdot 12 \cdot 2$	JN (1 A 1
	$32x^{2} + 2mx = 0 \Longrightarrow 32 \times 4^{2} + 2m \times 4 = 0 \Longrightarrow 16 + 8m = 0 \Longrightarrow m = -2$	dMIAI
	$n = 39 + 64\sqrt{4} - 2 \times 4^2 = 135$	dM1A1
		[6]
(b)	$\frac{d^2 y}{dx^2} = -\frac{1}{2} \times 32x^{-\frac{3}{2}} - 4 = -16x^{-\frac{3}{2}} - 4$	M1
	$\frac{d^2 y}{dx^2} = -6 < 0 \implies \text{maximum}$	A1FT [2]
	Total	8 marks

Part	Mark	Notes
(a)	M1	For an attempt to differentiate the given expression.
		Minimum required is two of:
		• $mx^2 \rightarrow kmx$, $k \neq 0$
		• $64\sqrt{x} \rightarrow nx^{-\frac{1}{2}}, n \neq 0$
		• $39 \rightarrow 0$
	A1	For a correct derivative in terms of <i>m</i>
	dM1	For setting their $\frac{dy}{dx} = 0$, substitute $x = 4$ and attempting to solve to
		find the value of <i>m</i>
		Dep on 1 st M mark.
	A1	For $m = -2$
	dM1	For using their value of <i>m</i> to find a value for <i>n</i>
		$n = 4^2 \times m + 167$
		Dep on 1 st M mark.
	A1	For the correct value of <i>n</i>
(b)	M1	For finding the second derivative.
		Minimum required is $\frac{d^2 y}{dx^2} = km + px^{-\frac{3}{2}}$ with k, p not 0.
		Allow for substituting x values on either side of $x = 4$ into their $\frac{dy}{dx}$
		provided $\frac{dy}{dx} = kmx + nx^{-\frac{1}{2}}$ with k, n not 0.
	A1FT	For substituting their value of <i>m</i> and forming a correct conclusion.
		Minimum required is substitution of their value of <i>m</i> together with
		x = 4 into their second derivative, evaluation and correct conclusion.
		Allow for evaluating of $\frac{dy}{dx}$ on either side of $x = 4$ and forming a
		correct conclusion.
		$x = 3.9, \frac{dy}{dx} = 0.6038$ $x = 4.1, \frac{dy}{dx} = -0.596$

Question	Scheme	Marks
8(a)	$U_5 = \left(\frac{25}{4}\right) \left(\frac{3}{5}\right)^5 = \frac{243}{500}$ oe	B1 [1]
(b)	$U_1 = \left(\frac{25}{4}\right) \left(\frac{3}{5}\right)^1 = \frac{15}{4}$ oe	B1
	$S_{n} = \left(\frac{15}{4}\right) \left(\frac{3}{5}\right)^{0} + \left(\frac{15}{4}\right) \left(\frac{3}{5}\right)^{1} + \dots + \left(\frac{15}{4}\right) \left(\frac{3}{5}\right)^{n-1}$	M1
	$\Rightarrow S_n = \sum_{r=1}^n \left(\frac{15}{4}\right) \left(\frac{3}{5}\right)^{r-1} \text{oe}$	A1
		[3]
	ALT 1	
	$U_1 = \left(\frac{25}{4}\right) \left(\frac{3}{5}\right)^1 = \frac{15}{4}$	[B1
	$r = \frac{3}{5} \qquad U_n = \frac{15}{4} \times \left(\frac{3}{5}\right)^{n-1}$	M1
	$S_n = \sum_{r=1}^n \frac{15}{4} \times \left(\frac{3}{5}\right)^r$	A1]
	ALT 2	
	$S_n = \sum_{r=1}^n \frac{25}{4} \left(\frac{3}{5}\right)^r$	[B1
	$=\sum_{r=1}^{n}\frac{25}{4}\times\frac{3}{5}\times\left(\frac{3}{5}\right)^{r-1}$	M1
	$=\sum_{r=1}^{n}\frac{15}{4} \times \left(\frac{3}{5}\right)^{r-1}$	A1]
(c)	$S_{\infty} = \frac{\frac{15}{4}}{1 - \frac{3}{5}} = \frac{75}{8} \text{ or } 9.375 \qquad S_n = \frac{\frac{15}{4} \left(1 - \left[\frac{3}{5}\right]^n\right)}{1 - \frac{3}{5}}$	M1M1
	$9.375 - \frac{\frac{15}{4} \left(1 - \left[\frac{3}{5} \right]^n \right)}{1 - \frac{3}{5}} < 0.045 \Longrightarrow \frac{\frac{15}{4} \left(1 - \left[\frac{3}{5} \right]^n \right)}{1 - \frac{3}{5}} > 9.33$	
	$\frac{\frac{15}{4}\left(1-\left[\frac{3}{5}\right]^n\right)}{1-\frac{3}{5}} > 9.33 \Longrightarrow 1-\left[\frac{3}{5}\right]^n > 0.9952 \Longrightarrow \left[\frac{3}{5}\right]^n < \frac{3}{625}$	dM1
	$n \lg \left[\frac{3}{5}\right] < \lg \frac{3}{625} \Longrightarrow n > 10.45$	ddM1A1
	n = 11	Al
	Tot	al 10 marks

Part	Mark	Notes
		Mark (a) and (b) together
(a)	B1	For the correct value only.
		Decimal value is 0.486.
(b)	B1	Finds the value of the first term. Must be identified as U_1 / first term.
	M1	Forms the sum of the series with at least the first term and the <i>n</i> th term.
	Al	For the correct expression.
	ALT I	D's 1 discretes of the Cost to see March 1 - i lost Cost and II / Cost to see
	BI	Finds the value of the first term. Must be identified as U_1 / first term.
		For finding r and writing $U_n = \frac{15}{4} \times \left(\frac{3}{5}\right)^{n-1}$
	A1	For the correct expression.
	ALT 2	
	B1	For correct summation statement using U_n from the question
	M1	For showing process to change index from r to $r - 1$ and find the value
		of $\frac{A}{B}$
		Minimum working is $\frac{25}{25} \times \left(\frac{3}{2}\right)^r - \frac{25}{25} \times \frac{3}{2} \times \left(\frac{3}{2}\right)^{r-1}$ May be with n as
		Within working is $\frac{1}{4} \times \left(\frac{1}{5}\right) = \frac{1}{4} \times \frac{1}{5} \times \left(\frac{1}{5}\right)$. What we with it as
	A 1	index.
	Al Trial an	For the correct expression.
(0)		Correct method to find the sum to infinity using the correct formula
	M1	15 3
	1411	with their $a = \frac{15}{4}$ and $r = \frac{5}{5}$. Their <i>a</i> should be $\frac{A}{B}$ if found in (b).
		Condone if working with $a = \frac{25}{4}$, r must be correct.
	M1	Using the correct formula, forms the sum to <i>n</i> terms using their $a = \frac{15}{4}$
		and $r = \frac{3}{5}$. Their <i>a</i> should be $\frac{A}{B}$ if found in (b).
		Condone if working with $a = \frac{25}{4}$, r must be correct.
	dM1	Forms the inequality in terms of <i>n</i> with their S_{∞} and S_n and simplifies
		to $\left[\frac{3}{5}\right]^n < \frac{3}{625}$
		Must have dealt with negative.
		Allow for working with equation if inequality sign reinstated later.
		Reinstatement can be implied by rounding up to the next integer value
		once <i>n</i> found.
		Dep M1M1
	ddM1	Uses logarithms correctly to attempt to find the value of n
		I hey must reverse the inequality for this mark.
		Allow for working with equation if inequality sign reinstated later.
		once <i>n</i> found
		Den previous M mark $Allow use of log base3$
	A 1	Dep previous in mark. Allow use of log base $\frac{1}{5}$.
	Al	For correct <i>n</i> awrt 10.5 Can be implied by $n = 11$ if decimal not seen.
1	A1	1 OI n = 11

Question	Scheme	Marks
9(a)	$(1+2x)^{\frac{1}{3}} = 1 + \left(-\frac{1}{2}\right)(2x) + \frac{\left(-\frac{1}{3}\right)\left(-\frac{4}{3}\right)(2x)^{2}}{2x} + \frac{\left(-\frac{1}{3}\right)\left(-\frac{4}{3}\right)\left(-\frac{7}{3}\right)(2x)^{3}}{2x} + \dots$	M1
		1011
	$=1-\frac{2x}{3}+\frac{8x^2}{9}-\frac{112x^3}{81}$	A1A1 [3]
(b)	$-\frac{1}{2} < x \leq \frac{1}{2} \text{accept} -\frac{1}{2} < x < \frac{1}{2}$	B1 [1]
(c)	$f(x) = (2 + kx^2) \left(1 - \frac{2x}{3} + \frac{8x^2}{9} - \frac{112x^3}{81} \right)$	M1
	$=2 - \frac{4x}{3} + \frac{16}{9}x^2 + kx^2 - \frac{224}{81}x^3 - \frac{2k}{3}x^3$	M1A1 [3]
(d)	$-\frac{224}{81} - \frac{2k}{3} = -\frac{8}{3} \Longrightarrow k = -\frac{4}{27}$	M1A1 [2]
(e)	$\int_{0.1}^{0.2} \left(2 - \frac{4x}{3} + \frac{44x^2}{27} - \frac{8}{3}x^3 \right) dx = \left[2x - \frac{4x^2}{2 \times 3} + \frac{44x^3}{3 \times 27} - \frac{8x^4}{4 \times 3} \right]_{0.1}^{0.2}$	B1FT M1A1ft
	$= \left(2 \times 0.2 - \frac{2 \times 0.2}{3} + \frac{44 \times 0.2}{81} - \frac{2}{3} \times 0.2^{4} \right) - \left(2 \times 0.1 - \frac{2 \times 0.1}{3} + \frac{44 \times 0.1}{81} - \frac{2}{3} \times 0.1^{4} \right)$ = 0.1828 NB: Calculator value is 0.18301744	M1
		[5]
	Total	14 marks

Part	Mark	Notes
(a)	M1	For an attempt at binomial expansion.
		• The first term is 1
		• The denominators are correct.
	A 1	• The powers of x are correct.
	Al	For at least one algebraic term correct and simplified.
(h)	AI R1	For the correct range
	DI	For the correct range. A scent $ v = \frac{1}{2}$
		Accept $ x < \frac{1}{2}$
		Do not accept $-\frac{1}{2} \le x \le \frac{1}{2}$
(c)	M1	For showing the intent to multiply their expansion by $(2+kx^2)$
	M1	For expanding the two brackets up to terms in x^3 . Ignore terms in
		higher powers.
	A1	For the correct expansion. This does not have to be simplified.
		Must be in ascending powers, but accept $\frac{10}{9}x^2$ and kx^2 in either order
		and accept $-\frac{224}{81}x^3$ and $-\frac{2k}{3}x^3$ in either order.
		$f(x) = 2 - \frac{4x}{3} + x^2 \left(\frac{16}{9} + k\right) + x^3 \left(-\frac{224}{81} - \frac{2k}{3}\right)$
		ISW errors in collection of coefficients once correct expansion in
		ascending powers seen.
(d)	M1	For setting their coefficient of x^3 equal to $-\frac{8}{3}$
	A1	For the correct value of k
(e)	B1FT	For substituting in their k into coefficient for x^2 in their expansion
		from (c) and having the coefficient of x^3 as $-\frac{8}{3}$.
		If the coefficient of x^2 is not correct then the substitution must be seen
		to award this mark.
	N/1	Note: this is an M mark in epen.
	IVI I	At least two powers of x to increase by 1 (including $c \rightarrow cx$). No
		power of <i>x</i> to reduce.
	Alft	For a correctly integrated expression follow through their 4 term polynomial.
		Simplified integrated expression is $2x - \frac{2x^2}{3} + \frac{44x^3}{81} - \frac{2}{3}x^4$
	M1	For substituting in 0.2 and 0.1 the correct way around in their
		integrated expression. Expression should not have been differentiated
		and needs to have changed.
		Not dependent on first M.
		Must snow the substitution in their integral of their minis are incorrect.
		implies this mark.
	A1	For the correct value of awrt 0.1828
		NB: The calculator value is 0.18301744

Question	Scheme	Marks
10(a)	$ \xrightarrow{\rightarrow} \xrightarrow{\rightarrow} \xrightarrow{\rightarrow} \xrightarrow{\rightarrow} \xrightarrow{\rightarrow} \xrightarrow{\rightarrow} \xrightarrow{\rightarrow} \xrightarrow{\rightarrow}$	D1
	(1) $AD = -OA + OD \rightarrow AD = -2a + 4D$	BI
	$\rightarrow \rightarrow 3(\rightarrow)$ 3 (\rightarrow) a a	M1A1
	(11) $MY = MA + \frac{1}{4} \left(AB \right) = \mathbf{a} + \frac{1}{4} \left(-2\mathbf{a} + 4\mathbf{b} \right) = -\frac{1}{2} + 3\mathbf{b}$	[4]
(b)	$\rightarrow \rightarrow $	
	$ \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow (a) (a) $	M1
	$OX = OM + MX = OM + \lambda MY = \mathbf{a} + \lambda \left(-\frac{\mathbf{a}}{2} + 3\mathbf{b}\right) = \mathbf{a}\left(1 - \frac{\lambda}{2}\right) + 3\lambda \mathbf{b}$	M1
	$\Rightarrow \mu 4\mathbf{b} = \mathbf{a} \left(1 - \frac{\lambda}{2} \right) + 3\mathbf{b}$	dM1
	$\Rightarrow 1 - \frac{\lambda}{2} = 0 \Rightarrow \lambda = 2$	
	$\Rightarrow 4\mu = 3\lambda \Rightarrow \mu = \frac{6}{2} = \frac{3}{2}$	ddM1
	OB: OX = 2:3 oe	A1
	ALT working with alternative vector within triangle OMY	[5]
	ALT – working with alternative vector within triangle OMX	EV (1
	$MX = MO + OB + \mu OB = -\mathbf{a} + 4\mathbf{b} + \mu 4\mathbf{b}$	[M1 M1
	$MX = \lambda \left(-\frac{\alpha}{2} + 3\boldsymbol{b} \right)$	1011
	$\Rightarrow -a = -\frac{\lambda a}{2} \Rightarrow \lambda = 2$	dM1
	$\Rightarrow 4\mathbf{b} + \mu 4\mathbf{b} = 3\lambda \mathbf{b} \Rightarrow \mu = \frac{1}{2}$	ddM1
	OB: OX = 2:3 oe	A1]
(c)	$\Delta YBX = 1$	
	$\Delta ABX = \frac{1}{4}$	M1
	$\Delta ABX = 1$	
	$\frac{1}{\Delta OAX} = \frac{1}{3}$	
	$\rightarrow \Delta YBX = \frac{1}{2} \times \frac{1}{2} = \frac{1}{2} \rightarrow \Delta YBX : \Delta QAX = 1.12$	M1A1
	$\Delta OAX = 4^{\circ}3^{\circ}12^{\circ}$	[3]
	ALT – working with relative areas of triangles	
	Area $\Delta IBX = a$ Area $\Delta ABX = 4a$ Area $\Delta OMX = 6a$	۲M1
	Area $\triangle AYX = 3a$ Area $\triangle OAY = 6a$	L
	Area $\triangle OYB = 2a$	
	Area $AOAY = 12a$	M1
	$\Delta YBX : \Delta OAX = 1:12$	A1]
	Total	11 marks

Part	Mark	Notes
(a)	B1	For the correct simplified vector AB
	M1	For the correct simplified vector $AB \rightarrow$
	A 1	For the correct vector statement for MY \rightarrow
		For the correct simplified vector for <i>MY</i>
(b)	M1	For the statement $\overrightarrow{OX} = \mu 4\mathbf{b}$
		Note: this is a B mark on epen.
	M1	\rightarrow
	1) (1	For the correct vector for OX (ft their MY)
	dMI	For equating both vectors for \overrightarrow{OX} and for comparing coefficients of a
		and b
		Dep on M1M1
	ddM1	For finding a value for their parameter for μ
		Note: there is no mark for only finding λ , they must find μ
		Dep on M1M1M1
	A1	For the correct ratio $OB: OX = 2:3$
		Allow equivalent ratios e.g. 4 : 6, 1 : 1.5
	ALT - Y	working with alternative vector within triangle <i>OMX</i>
	MI	For a vector statement which includes $\mu 4\mathbf{D}$ (for OX or BX) (if their MY) Note: this is a P more on anon
	M1	For a correct second vector equation for the same vector (ft their MV)
	dM1	For equating both vectors and comparing coefficients of a
		and b
		Dep on M1M1
	ddM1	For finding a value for their parameter for μ
		Note: there is no mark for only finding λ , they must find μ
		Dep on M1M1M1
	A1	For the correct ratio $OB: OX = 2:3$
		Allow equivalent ratios e.g. $4:6, 1:1.5$
(a)	M1	Condone $OX: OB = 3:2$ if clearly stated, but not just 3:2
(0)	1111	ARX
		or the relationship between the areas of triangles ABX and OAX
	M1	For finding the relationship between the of areas of triangles BYX and
		OAX
	A1	For the correct ratio [1:12]
		Allow equivalent ratios.
		Note: do not penalise answer given as a fraction i.e. $\frac{1}{12}$ if already
	A.7. 77	penalised in (b).
	ALT - Y	working with relative areas
	111	For assigning a value to one triangle area and writing a second area in terms of this
		Note:
		This could also follow from working with
		area of a triangle = $\frac{1}{2}ab \sin C$

	e.g. $\Delta YBX = \frac{1}{2} yz \sin B$ and $\Delta ABX = \frac{1}{2} y(4z) \sin B$
M1	For finding the relationship between the of areas of triangles BYX and
	OAX
	Note:
	This could also follow from working with
	area of a triangle $=\frac{1}{2}ab\sin C$
	e.g. $\Delta YBX = \frac{1}{2}yz \sin B$ and $\Delta ABX = \frac{1}{2}y(4z) \sin B$
A1	For the correct ratio [1:12]
	Allow equivalent ratios.
	Note: do not penalise answer given as a fraction i.e. $\frac{1}{12}$ if already
	penalised in (b).

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom